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A B S T R A C T

Deep learning for biological problems has become an active topic of
research quite recently. While deep learning techniques have already
been shown to be very effective in image recognition, their applica-
tion to complex biological problems was postponed for two reasons.
It is only until recently that data on such a huge scale as needed for
deep architectures can be provided in the field. And furthermore, the
interpretability of neural networks has been an issue in the past.
The latter problem is overcome by convolutional neural networks
while the rise of next-generation sequencing (NGS) generated the
large amount of data required for training deep architectures.

Such methods learn representations of the data they are confronted
with during training. Complex representations of genomic sequences
are greatly needed to further understand the regulatory mechanisms
of cells on a molecular level as these are even more complex.
Restricted Boltzmann Machines (RBMs) are a method to learn such
data representations in an unsupervised fashion, that is without re-
quiring a label for each training point. This property makes RBMs an
ideal tool to work on NGS data and extract features from that data.
To solve the issue of interpretability, a convolutional variant of RBMs,
similar to convolutional neural networks has been shown to learn
meaningful and interpretable features from data in the field of com-
puter vision.

In this thesis, I use convolutional restricted Boltzmann Machines (cRBMs)
to learn from NGS data. I show that the extracted features are mean-
ingful and can easily be interpreted in a biological setting. Further-
more, these features are specific to the set of sequences that the model
has been trained on, allowing for classification of tissue types.
Since the method works unsupervised, it can be used to detect biases
in NGS protocols, such as PAR-CLIP which measures interactions be-
tween RNA binding proteins and their corresponding RNAs.
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1

I N T R O D U C T I O N

Since the rise of DNA-sequencing in the early 2000’s, there has been
a dramatic increase of available biological data. New methods to
analyze and classify RNA and DNA sequencing data were developed
and have constantly been improved since then.
Knowledge of the structure and patterns in genomic data is essential
for many tasks, following the hypothesis that sequences sharing a
common pattern do so for functional purposes. This hypothesis has
been confirmed in several experiments and is therefore taken as a
common assumption for many algorithmic approaches in the field of
sequence analysis [14] and makes it possible to transfer algorithms
originally designed for pattern recognition to the area of sequence
analysis.
While there are many tools and algorithms around to perform specific
tasks, such as motif discovery or peak calling, there is a lack of data
representations that are not bound to a problem but rather describe
genomic sequences independently from it.

Deep learning methods have gained much interest in the last years.
It has been shown that deep neural networks are the state-of-the-art
technique to interpret images and videos.[30, 51, 48] They are promis-
ing in decision making when no analytic solutions can be found and
have even led people to claim that the need for programmers has
come to an end. While the latter is not very probable for the time
to come, deep architectures have had great success in many applica-
tions.
A significant part of that success comes from so-called convolutional
neural networks because they exploit some properties that images have
in common. Genetic sequences share many of these properties as for
instance the importance of context for a given pixel or nucleotide for
its function.
Thanks to the aforementioned boom in available genomic data it has
become possible to apply these algorithms to biological problems, as
shown in [2, 61, 26].
However, all of these algorithms only work in a supervised setting
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introduction

in which labeled data is available. But the generation of labels for
sequencing data (such as RNA expression values) is often expensive.

In this thesis, we apply the convolutional Restricted Boltzmann Machine
(cRBM) to genomic sequences. CRBMs are an algorithm to learn a
representation of data in an unsupervised fashion, i.e. when labels
are not available. The algorithm is very similar to a convolutional
neural network and has been shown to find good data representa-
tions in computer vision applications [32].
We show that the learned model is structured in a way to solve the
task of motif discovery naturally when learning to represent the data
well.
Furthermore, we use trained models to classify open chromatin re-
gions into tissue-specific regions. This is done by comparing the like-
lihood that a sequence belongs to either of the two data distributions
learned previously by the cRBM.
And finally, we use that same likelihood to detect biases in high-
throughput sequencing protocols such as the one used to generate
RNA sequences which bind a protein of interest, called PAR-CLIP.

1.1 challenges in sequence modeling and scope of the

thesis

As mentioned already, we test our model on three common problems
in sequence analysis and evaluate it. While the cRBM is not specifi-
cally designed to solve any of them, there have been applications in
other domains. For instance, RBMs were used to learn meaningful
features in images [32] and to predict if events belong to one or an-
other class of events [27].
While the cRBM model has been applied in different fields of science,
[32, 40, 24] there has not yet been any approach on genomic sequences
to the best of the author’s knowledge.

1.1.1 Motif Discovery

Short reoccurring patterns in genomic sequences can be interpreted
as sequence motifs. Such a motif describes a pattern of nucleotides
to which a certain protein will bind much more likely than to other
regions of the sequence. These patterns are typically only prefer-
ences for the protein and are therefore described in a probabilistic
way. The most common way of describing the binding preferences
of RNA/DNA-binding proteins is by using position weight matrices
which are matrices of dimensions k × |Σ| where k is the number of
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1.1 challenges in sequence modeling and scope of the thesis

nucleotides of the preference and Σ is the alphabet of possible nu-
cleotides.
While there are known experimental setups to detect motifs in se-
quences, most of the work is done by first sequencing cells with next-
generation-sequencing techniques, followed by the application of al-
gorithms to analyze these often massive amounts of data.
Traditionally, algorithms that perform discovery of de novo motifs do
so by modeling patterns in the data in a probabilistic way. They deter-
mine if such a pattern is over-represented in the data. The problem
of motif discovery is often solved with machine learning techniques.

In this thesis, I will present the convolutional restricted Boltzmann
machine as a method to find a representation of sequences as a linear
combination of motifs. I will show that motifs correspond to kernels
in convolutional architectures for computer vision tasks and that al-
gorithms exist to learn them.

Figure 1: The open chromatin regions.
Source: [55]

That way, the cRBM finds de novo motifs when being trained on a set
of similar sequences.
We show that the cRBM can recover transcription factor binding sites
which are known from literature on two different data sets in a DNA
context when learning to represent the data well. For this task, the
training data are relatively short sequences from DNase I hypersensitiv-
ity sites (DHS). DHSs are regions in the chromatin which are sensitive
to the DNase I enzyme. The DNase I enzyme cleaves the DNA in
these regions, thus giving them their name. A schematic view of
DHSs is depicted in figure 1.
Since their discovery some 30 years ago [59], DHSs have been used
as markers of regulatory DNA regions as these areas are mostly free
of nucleosomes. [52] DHSs are associated with different regulatory
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elements, such as promoters, enhancers, and silencers to just mention
but a few.[19]
The training data are thus sequences which are expected to have
strong patterns in them which can be identified.

1.1.2 Classification of Tissue Types

The learning procedure solves both of the problems in motif discov-
ery while also forming a probability distribution over the sequences.
We use that likelihood probability for our sequences by evaluating it
for two different models and choosing the class with higher probabil-
ity. That way, it is possible to determine whether a novel sequence
comes from the tissue type of sequences the model was trained on, or
not.
Using test sets from DHS regions, we show that this classification
yields accurate results which are comparable with state-of-the-art
classifiers. Good classification results are an indicator that the fea-
tures learned by the cRBM are not only meaningful in general but are
also distinct over different training sets.

1.1.3 Bias Detection in Sequencing Methods

The likelihood of a sequence given the cRBM model states a probabil-
ity that it belongs to the data on which the model was trained on. We
build a model upon sequences which come from PAR-CLIP control
experiments. PAR-CLIP experiments measure interactions between
RNA sequences and a protein of interest.

In a PAR-CLIP experiment, all bonds between RNA and proteins are
fixed and then a specifically designed antibody "drags out" the pro-
teins of interest together with the RNAs. The results are then reads
which in theory correspond to RNA binding protein binding sites.
There are several different occasions where a bias might occur in that
kind of experiment because the antibody does not only pull out the
proteins (and RNAs) of interest but also others [17].
While there have been attempts to tackle the problem of background
binding for different protocols, there is still no method to measure
background binding accurately.

In our experiment, we focus on the PAR-CLIP protocol. While it is
known that structured biases exist for various biological reasons[17],
there have been only a handful of approaches to analyzing that bias
accurately and normalize for it.
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1.2 outline

1.2 outline

In this thesis, I will first present the current state-of-the-art in all of
the problems mentioned above in chapter 2. I will then give a de-
tailed mathematical derivation of the restricted Boltzmann machine
and its convolutional counterpart in chapter 3. There, I will describe
the modifications of the original algorithms that were used to enforce
certain properties of the model.
In chapter 4, I will present experiments for all three of the problems
and show that the cRBM model can recover motifs of known tran-
scription factor binding sites in DNase I hypersensitivity sites for dif-
ferent tissues. I will further show that a classification into various
tissue types can be done with our model and that the cRBM com-
pares well with sophisticated supervised classifiers.
Finally, I will present the results of the analysis of PAR-CLIP control
experiments, leaving the domain of DNA sequences and moving to
the more complex field of RNAs. While this is promising, there are
still many improvements which are yet to be implemented. I will lay
them out in chapter 5 of the thesis.
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2

R E L AT E D W O R K

There is a variety of algorithms that try to solve the challenges men-
tioned in the previous chapter. The extraction of de novo motifs from
genomic sequences (motif discovery) is typically done by generative
models, such as hidden markov models (HMMs) [35] or expectation-
maximization (EM) [4]. Other approaches use the notion of k-mers to
classify sequences into protein families or cluster transcription factor
binding sites.
K-mers are all possible substrings of a given length k of a string, given
an alphabet Σ. In a DNA context, Σ typically contains the four let-
ters {A, C, G, T}, representing the four nucleotides of the DNA. They
can be used to represent a sequence as a vector, giving rise to differ-
ent string kernels. These are similarity measures between two strings
based on the dot product of two such k-mer vectors.
Various machine learning techniques have been proposed for protein
classification in the past, ranging from relatively simple linear mod-
els to complex systems like support vector machines or neural networks.
String kernels have made it possible to classify sequences with SVMs
(SVMs are further discussed in chapter 2.1.4) and they have reached
very high accuracy in such tasks.
However, with the availability of big data in bioinformatics, more
complex methods can be applied to the problem of classifying pro-
teins into different families or classifying transcription factor binding
sites according to their function.

The very same applies for the problem of motif discovery. While the
problem itself is NP-complete [42], many approximation algorithm
exist, the most important of them being MEME which is based on the
expectation maximization algorithm (EM) [4].
With the large amount of data available, these methods are limited
in terms of computational time required for training. Newer variants
of MEME designed for NGS-data only process a subset of the data,
neglecting the rest [36].

In the following chapter, I want to give a brief introduction into
known approaches to motif detection and classification, especially
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discussing the EM-algorithm used by MEME. Previous work in the
domain of pattern recognition in images have focused on neural net-
works and we will examine the foundations of that technique in more
detail. Since artificial neural networks lay out the foundations of the
restricted Boltzmann Machine and because they have been applied
so successfully, we will review their training algorithm more closely.
From there, I will present the convolutional neural network (cNN) as
an extension to the original algorithm and then give a general intro-
duction on restricted Boltzmann Machines. Finally, some very recent
applications of deep learning in biological problems are introduced,
especially the deepBind network by Alipanahi et al. to predict effects
of single nucleotide variants from sequences alone.[2]

2.1 approaches to sequence modeling

In this section, we want to give an overview of existing methods for
motif discovery and modeling of DNA. The task of discovering de
novo motifs in DNA sequences can be regarded the same as finding
patterns in text [14].
However, the problem has to be solved probabilistically because bind-
ing proteins seem to favor some regions and neglect others but are not
deterministically binding to a specific pattern while never binding to
another. This is why sequence specificities of proteins are usually de-
scribed using position weight matrices (PWMs) [34]. MEME tries to
find de novo motifs in sequences by fitting a mixture model to the
sequences, using an expectation maximization approach.[4] The algo-
rithm is explained in more detail in section 2.1.1. MEME finds one
motif at a time in the sequences, interpreting the whole task as an
unsupervised machine learning problem [4].

Other tools work similarly, and most algorithms model a probabil-
ity to distinguish between "interesting" regions (motifs) and some
background, [34] exploiting the locality of transcription factor bind-
ing sites. Motifs are found by looking for patterns which are over-
represented in the dataset. Such a motif occurs more often in the
data than would be expected if it was generated by chance. Such a
frequentist modeling of sequences also involves the notion of back-
ground in order to determine the frequencies for each of the letters
in the alphabet (A, C, G, T in DNA).
However, more recent approaches show that modeling sequences as
PWMs might not be enough to capture the whole biological mean-
ing encoded in them. It is partly because of the more sophisticated
mathematical representation as an ensemble of PWMs and their in-
teractions on a higher level that deepBind is outperforming other tools
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2.1 approaches to sequence modeling

in many aspects [2].

2.1.1 MEME and the EM-Algorithm

As already mentioned in the previous paragraph, MEME is the most
prominent tool to detect new motifs in a given set of sequences [34].
It tries to maximize the probability to observe the data in an iterative
fashion, assuming a particular model of observed and unobserved
variables. That can be interpreted as searching for the model that
most likely has generated the observed data. These models are there-
fore often called generative models.
In MEME, a latent random variable (RV) (one that can not be ob-
served but is responsible for certain properties of the observation)
describes whether a sub-sequence of a fixed width belongs to the mo-
tif or rather to the "background". The background is modeled as a
vector Θ2 ∈ R|Σ|, containing the frequencies of each letter in the al-
phabet. The motif, on the other hand, is modeled as a PWM with k
columns and |Σ| rows.
The sequence xi ∈ D is partitioned into sub-sequences of length k
with overlapping windows, meaning that frame of length k is "slid"
over the sequence. It advances by one nucleotide with each time step.
This windowing approach is similar to the cross-correlation operation
which is explained in more detail in chapter 3.3.1.
Furthermore, a mixing component λ states the probability of a win-
dow to belong to either the background or the motif.

The EM-algorithm uses the concept of a hidden variable that was im-
portant for generating the data but can not be observed. It iteratively
estimates first these hidden components, assuming that the other pa-
rameters are all known and then estimates the parameters, assuming
that the hidden components are known.

A much simpler approach than the EM-algorithm is the use of a first-
order hidden markov model. While also being generative, such a model
assumes independence between most of the RVs.

2.1.2 First Order Markov Models

First order markov models try to model sequences using a markov
chain. A markov chain consists of random variables at a certain point
t. By counting how often transitions from one nucleotide (modeled
as RV here) to another occur in the training data, transition proba-

9



related work

bilities can be estimated. Markov chains further fulfill the markov
assumption, stating that the transition probabilities from one letter
to the next only depend on the previous state, the chain was in but
none of the states before that one. Visualizing this process as graph-
ical model looks similar to a chain (compare to figure 2), hence the
name.

Figure 2: Visualization of a markov chain as graphical model. Transi-
tion from one state to the next is always independent from
previous states which simplifies the possible transitions.

To determine if a motif is over-represented in the data, a background
probability for each letter is typically calculated as well. For new
sequences, we can sum over all logarithmic transition probabilities in
a sequence in order to calculate the log-likelihood of the sequence,
given the model.

LL = log
N

∏
i=1

Pr(x(t)|x(t−1)) =
N

∑
i=1

log Pr(x(t)|x(t−1))

First-order markov models are appealing due to their simplicity but
they lack contextualization of nucleotides into their surroundings.
Furthermore, they do not assume that there are unobserved compo-
nents in the generative process.
This is why we use them in chapter 4.4 as a lower bound for classifi-
cation.
A model that overcomes the weaknesses first-order markov models
is the hidden markov model (HMM) which introduces the notion of
hidden variables and models them while still guarding the markov
property.

2.1.3 Hidden Markov Models

Hidden markov models are an extension of the classic markov chain.
Much like the EM-algorithm, HMMs try to model underlying hidden
variables that are important for the generation of data but cannot be
observed directly. The state of these latent variables has to be inferred
instead.
The goal in a hidden markov model is to maximize the likelihood
of the data. This maximization sounds familiar and indeed, HMMs
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2.1 approaches to sequence modeling

can be trained with the EM-algorithm. Markov models, HMMs and
also the restricted Boltzmann Machine introduced in 2.3 belong to the
class of generative models.
Training HMMs is usually done with the Baum-Welch algorithm which
is a specialized version of the EM-algorithm. It iteratively optimizes
the parameters of the model and infers the hidden states with it.

So far, I introduced several generative models for the problem of se-
quence modeling. Classifiers, however, also often have to convert
genomic sequences into mathematical notation prior to classification.
One such an approach are string kernels which are extensively used
by support vector machines (SVMs).

2.1.4 Support Vector Machines

A support vector machine is a maximum margin classifier. It follows
the theory that a larger margin between the closest point from a class
and the separation line leads to a better generalization of the model.
For that, SVMs consider both, positive and negative data for the se-
lection of an optimal decision boundary between the two classes.
SVMs are linear classifiers but can easily be kernelized. Kernelization
means transforming the input data to a usually much higher dimen-
sional space. In such a high-dimensional space, classification prob-
lems often become linear, even when they are not in the input space.
Because SVMs only need to have a similarity measure between two
data points but do not need the high dimensional space at any other
point, efficient mathematical approaches exist to transform the data
to the kernel space. Such approaches make sure that the data is never
actually converted to the high dimensional space explicitly but only
implicitly.
Kernelized versions of SVMs can solve non-linear problems while still
finding an optimal solution for the problem in a given kernel space.
However, one must select a kernel explicitly, thus introducing expert
knowledge and a potential bias. Furthermore, SVMs are not easily
interpretable. It is a hard problem, for instance, to select the most
important features for the formation of the decision boundary which
often can only be solved by trying out all different combination of
features and looking at the loss.
SVMs find sparse solutions for a given classification by selecting so-
called support vectors which contribute to the formation of the decision
boundary. All other points can be discarded after training which is
a considerable advantage over most other classifiers (like k-nearest
neighbors) when dealing with large data sets.
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2.2 neural networks

During the last years, the focus has shifted from biological experi-
ments to verify functions of genes or transcription factors to more
computational approaches (for example in gene finding). Machine
learning has become increasingly important in many areas of bioin-
formatics and often generates new insights to the mechanisms of gene
regulation.
Two different approaches can be seen in the machine learning com-
munity, one being the range of classifiers that try to discriminate data
into different classes. They can be very powerful but rely on the la-
bels (i.e. they only work supervised).
Another approach is the generative models, such as markov models,
HMMs or RBMs.
While motif discovery has traditionally been solved with generative
models, recent advances have used a classifier for this task that was
detecting motifs without explicitly looking for them [2].
On the other hand, protein classification and gene finding were usu-
ally solved with support vector machines, logistic regressions or neu-
ral networks.

The latter has evolved to be one of the most influential classifiers dur-
ing the last years. Today, artificial neural networks are the state-of-
the-art machine learning system for applications in computer vision,
natural language processing and robotics.[62, 10, 60] and have come
a long way since the first description of the perceptron algorithm in
1958.[45] The perceptron was a simple linear classifier that could be
trained by showing it example data vectors and yielded an optimal so-
lution if there was one available (that is, the data was linearly separa-
ble).

Figure 3: The XOR problem with ap-
ples and oranges

However, this first algorithm
was not embedded in a net-
work of other classifiers, and
it was unable to solve any
non-linear problems and espe-
cially not the famous XOR-
problem. This most simple 2-
dimensional problem depicted
in figure 3 led to a serious de-
cline in research activity in the
field. [47]
It was only until 1974 that
Paul Werbos created the back-
propagation algorithm that was
the first training algorithm for
networks of different percep-
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2.2 neural networks

trons.[56] That algorithm lead
to an enormous re-interest in the field and formed the basis of mod-
ern artificial neural networks (aNNs). But even with an effective
learning algorithm at hand, aNNs with many hidden layers remained
un-trainable because of the nature of the backpropagation algorithm.
For a training example, an error is calculated that typically lays be-
tween zero and one. When this value is now propagated through a
deep aNN, this error becomes smaller and smaller, leading to the van-
ishing gradient problem. The lowest layers of the aNN are not trained
any longer by backpropagation, leaving these most important layers
with their random initialization.
However, recent advances have overcome the problem by pre-training
the aNN in a layer-wise fashion or by introducing new kinds of
non-linear activation functions. Together with recent advances in
hardware and especially GPUs, the path was clear for what today
is dubbed deep learning.
Deep learning architectures are aNNs that have multiple hidden lay-
ers and are so very powerful because the lower layers learn useful
data representations that can be used by higher neurons in the net-
work to perform classification. Until now, there exists only a handful
of applications of deep learning to biological problems. Since it is
usually hard to get large data sets in life sciences and since aNNs
typically need very high amounts of training data, that fact is entirely
understandable. But with the rise of next generation sequencing over
the last years, it has become possible in genomics to generate large
amounts of sequencing data that can be used by deep learning appli-
cations.

In a more formal way, we can define a fully connected feed forward
neural network as a directed and acyclic graph in which the nodes
are arranged in layers. Nodes within one layer have no connections
to each other but every node from layer i is connected to all nodes in
layer i + 1 and i− 1.
The connections between nodes have weights associated with them.
Nodes can also be called neurons, or units. To classify a data vector,
it is clamped to the lowest layer of the network. From there, the num-
bers are propagated to the next layer and each neuron sums together
the incoming numbers and decides whether to activate, depending
on a non-linear function, typically the sigmoid function.
This way, each neuron can be viewed as a linear classifier that takes
a certain responsibility in the search space. In image recognition, a
neuron might be responsible for detecting horizontal edges in an im-
age, while a neuron further up the network might be responsible for
deciding whether there is a cat in the image or not.
Feed forward neural networks are a supervised method, which means
they need labels for input vectors in order to learn from the data.
When a new training vector is shown to the network, the informa-
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Figure 4: A schematic view of a fully connected feed forward net-
work. The 5-dimensional input vector is first forced to be
represented by only three dimensions (red layer). This re-
duced representation is then seen by the next layer (green
layer) which tries yet again to find another representation
of the input data.Finally, a one-dimensional output classi-
fies the input vector.

tion is first propagated up. At the output layer, it is compared to the
desired output (label) and an error is calculated from the difference
of both. This error is then used to calculate derivatives at each of
the edges. The weights are then changed a little into the direction of
that gradient, and the procedure is repeated. This gradient descent
algorithm is a very popular choice in machine learning and can be
applied when there is no analytic solution to the maximization of the
objective function. Unfortunately, the algorithm does not give any
guarantees as to convergence rates or global goodness of the final
solution.

Calculating the partial derivative of the error function with respect
to one of the weights is an iterative process. First, the derivatives for
the deepest layer are calculated and from there it becomes possible to
calculate them for the second-deepest one and so one. This top-down
approach is why the algorithm is called backpropagation, because it
starts at the back and propagates the partial derivatives back to the
front.
In the next section, we want to dive more into the training procedure
of feed forward aNNs to see in how far it is similar to our proposed
method and where it differs.
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2.2.1 Training Neural Networks

The backpropagation algorithm tries to answer the question, in how
far each of the neurons are responsible for the error that was made
by the network as a whole. That means, when we propagate the error
up to the output layer, we then first calculate the output’s error, using
the squared error measure.

E =
1
2

k

∑
i=1

(yi − ti)
2

This error is then split up between all neurons in a top-down fashion.
The key principle is here to calculate the error’s partial derivatives
with respect to the weights that connect that two neurons. We start
by calculating the derivative for the weights connecting the output
layer with the second-last layer. These can be calculated easily with
the chain rule. From that point, it becomes possible to calculate the
derivatives for the weights connecting the second-last with the third-
last layer and so on. Finally, we arrive at the input layer and the
backpropagation algorithm terminates for the given input. When we
repeat this procedure for all data points, the network will slowly start
to learn to minimize the error.
We will assume that the neural network at hand uses the sigmoid
activation function which is given by:

sig(x) =
1

1 + e−x

This function is particularly handy because of its very easy derivative.
We can write:

sig′(x) = sig(x)(1− sig(x))

So the question that asks in how far one unit is responsible for the
error of the whole network becomes a question of partial derivatives
with respect to the connections between layers (the weights). The
chain rule states how the derivative for functions that were applied
one after the other can be written, using only the single functions.
More precisely, the chain rule states:

( f ◦ g)′ = ( f ′ ◦ g) · g′ (1)

When we consider the neurons as functions that are applied one after
the other, we can finally calculate the partial derivatives.
During the forward step, the output and input of each neuron is
stored. Let ok

i be the output of neuron i in layer k and hk+1
j be the

input for neuron j in layer (k + 1). These values are known from the
forward pass and can be used to calculate the partial derivative with
respect to the weights.

∂E
∂wk

ij
= ok

i δ
(k+1)
j
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where δk
j is given by:

δk
j =

{
f ′(hk

j )(tj − ok
j ), for output layer.

f ′(hk
j )(∑i∈incoming wjiδ

(k+1)
i , for inner layers.

There are several interesting properties in the backpropagation algo-

Figure 5: Example of how a neural network can solve the XOR prob-
lem. The first layer of the network only finds good data
representations that serve as input for the next layer. There,
the problem is suddenly linearly separable, and the prob-
lem as a whole can be solved.

rithm that do not seem evident from the formulas. First of all, the
network tends to find useful representations of the data in the first
layers, as depicted in figure 5. Then the choice of the non-linear ac-
tivation function plays a fundamental role as to how the network is
able to learn. But even with a non-linearity at each neuron, a feed
forward network can be regarded as ensemble of different linear clas-
sifiers, each of them being responsible for one part of the overall task.
Another observation is that the backpropagation algorithm is highly
efficient because of the reuse of values that were computed for the
forward pass already. When we use the sigmoid activation function
with its easy derivative, we can write the entire partial derivative as
a combination of ok

i and δ
(k+1)
j .

Despite all of the advantages of neural networks to other classifiers,
they have also some disadvantages. Because of the large amounts
of parameters, the classical fully connected feed forward network re-
quires huge amounts of training data for successful learning. Over-
fitting can occur easily and does so frequently. Furthermore, there
is no guarantee that the solution found by the network is optimal in
any way. And finally, applying these kinds of networks to images is
usually not feasible due to the huge amount of parameters and the
very structure of an image. When there is the same pattern of pixels
somewhere in the image, we usually want it to be recognized as such,
no matter where the pattern is located in the image. But imagine
a neural network that is trained to see some feature (an apple, for
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instance) in the upper left corner. The network would be unable to
recognize the very same apple located in the lower right corner of the
image when this image was not part of the training set.

To overcome these problems, LeCun et al. proposed the convolutional
neural network in [31], which resolves most of the problems in the
field of computer vision applications.

2.2.2 Convolutional Neural Networks

The convolutional neural network is a variant of the conventional
neural network in which the connections between two units are con-
volutions instead of simple connections. The convolution operation
is explained in detail in section 3.3.1 but it is worth noting that con-
volutions can be regarded as filters or kernels applied to images.
With this informal definition, we can define the weights connecting
the input layer with the first one as filters. Their application to the
image (the input layer) yields in the first hidden layer of the network.
When we have a two-dimensional image of x× y input neurons, the
first hidden layer typically is three-dimensional. This is because we
apply many filters to the image, each one of them producing a two-
dimensional matrix.
When we now look at the mathematical side of it, we only have to
change the way gradients are computed from the error. Since the
connection between layers is a convolution, we can also express the
gradient as convolutions.

This approach solves the translation invariance issue because a filter
will be applied everywhere in the image. Furthermore, the number
of parameters is drastically reduced. When we use k different kernels,
each of size xk × yk, we have k · (xk · yk) parameters for the convolu-
tional layer. Typically, xk and yk are small and 20-30 kernels are often
enough to describe the structure of an image.

For image -and biological applications, the interpretability is in-
creased when using convolutional neural networks because the ker-
nels have an interpretation that is known already. In image process-
ing application, the kernels usually correspond to stereotypical mini-
images like the cat or the face in figure 6. In biological applications,
however, the kernels can correspond to position weight matrices in the
first layer. These matrices can be visualized as web-logos and then
interpreted in a very humanly-readable way.
Later stages could be visualized either as combinations of motifs in
the input space (that is as a web-logo, scaled by the amount of lower-
level PWMs contributing to the feature). Or they could be visual-
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Figure 6: Schematic view of a deep convolutional neural network.
The first layers capture low-level features like edge-
detectors in the images. Later stages of the network capture
more complex features like cats or faces. Source: [39]

ized as interactions between transcription factors in an interaction
network.

We can see that by exploiting some prior knowledge about the do-
main from which the data originates, it is possible to solve many
problems that arise with neural networks. Convolutions are very com-
mon in computer vision tasks but also in motif discovery. When we
want to find a motif in a DNA or RNA sequence, this can be done
efficiently with convolutions.

2.3 restricted boltzmann machines

We have seen that cNNs are an adaption of the original aNN and that
this extension to a convolutional context can be embedded easily into
the backpropagation algorithm.
The restricted Boltzmann Machine can be seen as an unsupervised
alternative to neural networks. Much like them, RBMs learn useful
data representations but unlike aNNs, the usefulness is not defined
as being good for classification. Instead, RBMs belong to the class
of generative models. Hence, the model tries to maximize the prob-
ability that its parameters have generated the training set. With that
approach, it captures abstract structures in the data.

A restricted Boltzmann Machine is a two-layered undirected graphi-
cal model with no connection within one layer. Each node represents
a random variable (RV) and edges have weights assigned to them. An
edge represents the statistical associations between nodes (RVs). The
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units are fully connected, that is every unit in one layer is connected to
each unit from the other layer.
In graphical models, the random variables can be either observed or
not. When they are observed, the current value of the RV is known.
Following the rules for statistical independence, we can see already
that an observed variable "blocks" the dependence of RVs.
Because of the lack of connections within one layer, each of the units
become independent from each other when the other layer is ob-
served. This property is critical to formulating efficient algorithms
for this kind of graphical models and is the difference between "stan-
dard" Boltzmann Machines and restricted Boltzmann Machines, so
called RBMs. Restricted Boltzmann Machines, as any graphical model,

Figure 7: Schematic view of a RBM with five input units (blue) and
three hidden units (red). Units in the same layer have no
connections while every unit from one layer is connected to
each of the units from the other layer.

build a probability distribution P(x) over the data. A RBM models
the data by introducing a hidden layer that describes structures or
categories of the data.
A random variable in the hidden layer stands for one of these cate-
gories within the data and when we have a situation in which the
number of hidden units is smaller than the number of visible ones,
RBMs find a representation of the data in a lower-dimensional sub-
space.[24]
The goal of training a RBM is to learn these categories from the data
without the use of labels, such that the learning can be interpreted as
solving a clustering problem.

A specialty of the RBM is that all units (nodes) are binary, that is
they can have states of either zero or one. That indicates whether a
particular category is activated or not in H or V. As we will see in
chapter 3.3.4, DNA sequences can be converted to a matrix in which
the binary requirement is met.
A restricted Boltzmann Machine works similar to a neural network
in that the data is clamped to the model (to the visible layer) and
then propagated upwards first. By clamping the data vector to V, the
random variables in V become observed. By the rules of graph sep-
aration, H then becomes statistically independent from V. When we
want to propagate the information back down, the statistical indepen-
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dence holds for the units in the visible layer because the whole layer
H is observed.

We have mentioned before that the hidden layer performs clustering
once the model is properly trained. Input vectors will switch on some
of the units in the hidden layer. In that way, H is a representation
of the data and can be used to reconstruct it. It has been shown
that RBMs can restore information when only partly completed data
vectors are clamped to V [49].

After introducing the traditional generative methods for modeling
sequences, we saw how deep neural networks could learn representa-
tions on their own for classification. RBMs are a hybrid in the sense
that they, as neural networks, learn data representations automati-
cally. However, they belong to the class of generative models.
Recent advances in bioinformatics have made use of deep neural net-
works to predict binding affinities in silico and their model learns
motifs as a byproduct. This application shows that deep learning
techniques have very promising use cases in bioinformatics, and I
will present their approach in more detail.

2.4 prediction of binding affinity with cnns

The success of aNNs with multiple hidden layers comes mainly from
the extended possibility for the network to find a good representa-
tion of the data. Due to the hierarchical order of different layers, the
classification problem in a deep neural network is split into several
pieces. Each of the layers can be seen as just augmenting the data
representation a little by either adding or removing information from
it.
Smaller hidden layers create a bottleneck of the information flow, forc-
ing the network to learn a sparse representation of the features from
the previous layer. Such a compression can be very useful for classifi-
cation because unimportant parts of the data are neglected, and noise
is removed.
But also the translation equivariance of convolutional approaches con-
tributed to the success story of deep learning techniques. These net-
works require considerably less parameters for training and boost the
interpretability of the model at the same time when looking at images
or genetic sequences.

In 2015, the paper by Alipanahi et al. received huge attention.[28] The
group predicted the effects of single nucleotide variants (SNVs) on a
molecular level and outperformed all of the state-of-the-art methods
by using a deep convolutional neural network for the prediction.[2]
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Not only was their tool, called "DeepBind", able to accurately dis-
cover motifs in sequences, it also yielded top results in determining
the effect of SNVs from sequence alone.
As shown in section 2.2, deep neural networks learn representations
of the data that is presented to them during training. And since
convolutions of sequences with PWMs is equivalent to scanning se-
quences for motifs as mentioned in the previous section, the first layer
of a cNN learns motifs and thus transcription factor binding sites.
In the domain of motif discovery, deepBind outperformed all exist-

Figure 8: The architecture of the deepBind model. The convolution
layer is followed by max pooling and a densely connected
layer with one output neuron. Source: [2]

ing methods in the DREAM5 TF-DNA Motif Recognition Challenge in
which a set of sequences from protein binding microarray (PBM) exper-
iments is used. While all of the sequences are made known, only a
some of the PBM data was provided. The goal of the challenge was
thus to predict the probe intensities of the array.
To see whether algorithms perform well across sequencing technolo-
gies, the same trained model was also evaluated on 500 ChIP-seq
peaks. The motifs, however, are just one part of the learned represen-
tation. The dense layer that is applied after the convolutional layer
also has a biological meaning. It learns certain patterns in the layer of
"motif hits". This way, the authors of the deepBind paper were able to
infer rules for combining these patterns into one score that predicts
binding.
To analyze the effects of SNVs, the authors compared the predicted
score for the original sequence and for a modified sequence with one
nucleotide changed. When the score changes significantly, then the
SNV is likely to either damage the gene function or adding new func-
tionality.

The advantages of a deep learning approach to the problem are the
ability of neural networks to deal with large amounts of data in a
reasonable amount of time and the hierarchical order of the layers.
The learned data representation solves the motif discovery problem
as a byproduct of maximum classification and also finds patterns in
the co-activation of motifs.
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2.5 approaches to find biases in par-clip rna control

experiments

Friedersdorf and Keene showed in [17] that background binding in-
troduces a significant bias to high-throughput sequencing methods
such as PAR-CLIP, which profiles RNA binding protein sites.
In their study from 2014, the authors conduct and analyze control
PAR-CLIP experiments, revealing that background binding is com-
mon. A control experiment is one where instead of pulling RNA
from the cell with an antibody that only binds to the protein of in-
terest, an unspecific antibody is used. In theory, such an experiment
should result in a uniform distribution of RNAs throughout the cell.
However, this is not the case as Friedersdorf et al. have shown. [17]
Instead, there are motifs also in the data from control experiments.
Furthermore, the authors claim that a profound analysis of the back-
ground binding could significantly improve existing methods to call
peaks in such data sets. By incorporating information from control
experiments into their analysis, the authors were able to show that
new binding sites could be identified for an RNA-binding protein
(RBP) with unknown binding preference.
In their work from 2014, the authors did not develop or evaluate a
method for peak calling that takes into account the biases from con-
trol experiments. A newly developed method would have to deal
with large amounts of data and should be able to work in an unsu-
pervised fashion.

There are different peak-callers for various protocols for high-throughput
RNA sequencing methods available. They typically model the read-
count distribution of a data set using variants of the negative binomial
distribution [54, 43] and assume that this also models the background
noise distribution. A peak is then found by looking at sites where
the read-counts are significantly larger than expected. However, the
above-mentioned approaches do not model the background explicitly
from control experiments.
Detection of such biases in an unsupervised fashion can help the peak
calling process and interpretation of the final results.
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S TAT I S T I C A L M E T H O D S

In chapter 2 we saw an intuition on what restricted Boltzmann Ma-
chines (RBMs) are learning and what they can be used for. In this
section, I will re-introduce RBMs in a more formal way, show the
derivations of the most important formulas and describe how we ap-
plied convolutional RBMs to biological data.
For that, I start by introducing some mathematical concepts on which
RBMs are relying. From there, I present RBMs as probabilistic graph-
ical models and introduce its convolutional counterpart, the convolu-
tional RBM. This model is an extension of the original algorithm and
can be regarded as a convolutional neural network with stochastic
activation.
Finally, I will introduce some methods that we used to enforce spar-
sity on the model and to avoid the problem of overfitting.

3.1 mathematical foundations

We will first discuss gibbs sampling and block gibbs sampling as the
most important algorithms to obtain samples from a complex dis-
tribution where this is not possible otherwise. I will then present
the gradient descent algorithm as the method of choice to do learning
in a non-convex optimization environment and finally introduce the
softmax and multinomial distributions as they are crucial to sample
from multiclass probabilities. This is often the case in our applica-
tion on sequences to sample a nucleotide from a distribution over all
nucleotides.

3.1.1 Gibbs Sampling & Blocking Gibbs Sampling

Gibbs sampling is an algorithm to draw samples from a multivariate
probability distribution of which it is complicated to get samples of.
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It is used when we want to draw samples from the joint probability
distribution Pr(x1, . . . , xK) but when we can only get samples from
the conditional distributions Pr(xi|x1, . . . , xi−1, xi+1, . . . , xK).
To get a true sample from the joint distribution, we simply initialize
our result with some initial values and start an iterative procedure
that is guaranteed to converge to a true sample from the joint prob-
ability distribution. For each iteration, one of the random variables
(RVs) (i.e. Xk) is chosen. All the other RVs are fixed to their cur-
rent values, and a sample is drawn from the conditional probability
distribution:

Pr(Xk = xk|x1, . . . , xk−1, xk+1, . . . , xK)

We repeat this process until each of the K RVs has been chosen once.
We then also repeat the whole process of choosing variables until the
joint distribution P(x1, . . . , xK) does not change anymore. This state
is known as stationary distribution or thermal equilibrium[37].
It can be shown that the gibbs sampling algorithm constructs a markov
chain and that the stationary distribution of that markov chain corre-
sponds to an approximation of the desired joint probability distribu-
tion [37, 18].

Algorithm 1 Gibbs Sampling

1: U(0)
k ← Initialize with values

2: for k = 1, 2, . . . , K do
3: generate U(t)

k from Pr(U(t)
k |U

(t)
1 , . . . , U(t)

k−1, U(t)
k+1, . . . , U(t)

K )

4: end for

In probabilistic graphical models and Bayesian networks, gibbs sam-
pling is often used as an approximative technique to perform infer-
ence [7]. It can be applied efficiently when the topology of the net-
work satisfies certain conditions.
This is particularly the case in markov random fields because there, the
nodes (RVs) are only depending on the neighboring nodes. The condi-
tional probability of an RV then becomes a function of the neighbors.
Thus, we can use gibbs sampling in a parallel fashion because the
units that are not neighbors are independent of each other and can
be sampled at the same time. Especially, if the network is structured
in layers and all nodes in one layer have no connections between them,
the gibbs sampling algorithm can be applied very efficiently. In that
special case, we can sample all conditional probabilities for one layer
in parallel as the nodes from the other layers are observed and thus
statistically independent from each other.

24



3.1 mathematical foundations

3.1.2 Gradient Descent Algorithm

Gradient descent is an iterative optimization algorithm to find the
minimum in some differentiable function E(x) with x ∈ RN . Usually,
the surface of E(x) is largely unknown, and explicit calculation of the
extreme points of the function is not feasible.
So we wish to solve the following problem:

min
x∈RN

E(x) (2)

In such a case, gradient descent starts with some initial random x
and then follows the negative gradient of E(x) by changing x by a
small step in the direction of ∇E(x). This way, the algorithm slowly
approaches a (local) minimum of E(x) and converges when no further
improvement is possible. Because the surface of E might be rapidly
changing, the gradient has to be recalculated after following it for
some time. It highly depends on the application how small this step
size η can be. Small values for η follow the gradient more closely
while large values for η speed up the convergence but can overshoot
local minima. Starting at a random initial x0 and for each iteration t of
the gradient descent algorithm, we can solve the above minimization
problem (equation 2) as:

x(t+1) = x(t) − η∇E(x(t)) (3)

In the context of most non-convex machine learning techniques, the
function E(x) is defined with respect to some training set. In that
case, calculating the gradient means taking the average of gradients
over all training points in the data set which is often not feasible.
Alternatively, one can use online or stochastic gradient descent which
uses only one or a small batch of training points to estimate the gra-
dient. This technique no longer follows the true negative gradient
of E but it is shown to converge much faster [29]. Furthermore, the
changes of x become more noisy with stochastic gradient descent
which can even result in the overcoming of sub-optimal local minima
[7].

Several extensions have been proposed to improve the often poor
performance of the gradient descent algorithm, including momentum.
With this method, the direction from the last step of the algorithm is
incorporated into the current one which results in a behavior similar
to a ball rolling downhill.
This is often useful when moving along "ridges" on the surface of E
where normal stochastic gradient descent would "zig-zag" along the
ridge. In such a case, momentum helps to find a stable direction and
move down the "ridge" quickly.
Mini-batches are a trade-off between efficient computations (update
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Figure 9: Gradient descent with (red) and without (blue) momentum.
We can see that momentum allows the algorithm to jump
over small saddle points in order to find a better minimum.

the model’s parameters as often as possible) and mathematical cor-
rectness (update only after all the derivatives for all sequences are
known and move in the direction of the "true" gradient). They pro-
cess a small batch of training points at once but not the whole set.
There has been much research in the field and many scientific articles
promote different opinions on the matter [57, 58] but in recent years,
the mini-batch approach has been used extensively[2, 32, 50].
Many more improvements to gradient descent have been proposed
but are not discussed here. See [46] for more information and vari-
ants of the gradient descent algorithm.

3.1.3 Softmax Function & Categorical Distribution

The softmax function calculates probabilities for different events when
only raw counts of an event are available, and the categorial proba-
bility distribution can be used to represent the result from such a
softmax function.
The probability for an event to occur should be high when the raw
counts are high and low when the counts are low. Additionally, high
counts should be over-represented such that the result of a softmax
function is categorically distributed. This also implies that the proba-
bilities for all events sum up to 1.
The softmax function achieves all that and can be defined as:

Pr(Ci|x) =
exi

∑K
k=1 exk

(4)

where Ci denotes the classes and x is a vector containing the counts
for each event.

The resulting distribution is called the categorical probability distribu-
tion, a generalization of the binomial distribution. Softmax functions
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are often used in machine learning to classify an RV into discrete
classes.
We use the categorical distribution extensively to sample from the re-
sult of the softmax function. This is often the case when we apply
the probabilistic max pooling operation which is further described in
section 3.4.1.

3.2 restricted boltzmann machines

We have presented the general idea of RBMs in chapter 2.3. The
following chapter will focus on the mathematical derivations and de-
tails in training models. We present contrastive divergence, a training
algorithm for RBMs that approximates the true partial derivatives to
speed up learning and thus make training RBMs feasible in large
scale applications.
An adaption that results in better approximations of the gradient is
called persistent contrastive divergence and is presented here as well.
I will use the terms gradient, derivative and partial derivative inter-
changeable in this thesis. While all three of them describe the first
order partial derivatives of some vector with respect to parameters θ,
in literature the term gradient is most widely used.

3.2.1 Formal Definition of RBMs

Formally, an RBM can be interpreted as a maximum-likelihood prob-
lem. We can define a probability for both, the data and the hidden
units. From there, it is possible to derive the parameters for exact
maximum-likelihood learning. Let:

Pr(v, h) =
1
Z

exp (−E(v, h)) (5)

where E is the energy function defined as:

E(v, h) = −∑
i,j

viWijhj −∑
j

bjhj −∑
i

civi (6)

and Z denotes the partition function:

Z = ∑
i,j

exp−E(vi ,hj) (7)

Z assures that the whole term stays in the range between zero and
one and guarantees that Pr(v, h) actually is a probability. However,
the calculation of Z involves summing over all possible hidden states
and therefore it is avoided to compute it explicitly. For instance, an
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RBM with one hundred hidden units: To calculate Z, we would have
to sum over 2100 different states, which is not feasible. There are meth-
ods to estimate the partition function but we will not go into detail
here.
The energy function just counts the interactions between the visible
and hidden units, weighted by the respective entry in W. Hence, we

Figure 10: Schematic view of a RBM with five input units (blue) and
three hidden units (red). Units in the same layer have no
connections while every unit from one layer is connected
to each of the units from the other layer.

can interpret the weight matrix as a function that chooses to give high
importance to some interactions, while suppressing others. Formally,
the independence of the random variables result in the following de-
composition of the conditional probability:

Pr(v|h) =
Nh

∏
j=1

Pr(hj|v) (8)

We can use this fact to calculate the probabilities of the hidden units
to be activated by the data and vice-versa using equations 5 and 6:

Pr(hj = 1|v) =
Pr(hj = 1, v)

Pr(v)

=
Pr(hj = 1, v)

Pr(hj = 1, v) + Pr(hj = 0, v)

=
1
Z exp

(
∑i viWijhj + bjhj + ∑i civi

)
1
Z exp

(
∑i viWijhj + bjhj + ∑i civi

)
+ exp(∑i civi)

=
exp(∑i civi) exp

(
∑i viWijhj + bjhj

)
exp(∑i civi)

(
exp

(
∑i viWijhj + bjhj

)
+ e0

)
=

exp
(

∑i viWijhj + bjhj
)

exp
(

∑i viWijhj + bjhj
)
+ 1

= σ(∑
i

viWij + bj)
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The conditional probability for the visible layer, given the hidden one
can be computed similarly. We get the following two equations for
the conditional probability when we use equation 8:

Pr(h|v) =
Nh

∏
j=1

σ(∑
i

viWij + bj) (9)

Pr(v|h) =
Nv

∏
i=1

σ(∑
j

Wijhj + ci) (10)

These two equations can now be used to perform Block Gibbs Sampling
to obtain samples from the joint probability distribution over a data
point. This can be done by applying equations 9 and 10 in an alter-
nating fashion and sampling from the distributions in each step.
That is, we first compute the activations in the hidden layer and then
reconstruct the visible layer from there.

Now we have all the components together to perform maximum-likelihood
learning on the data, where we try to maximize the parameters to fit
the data best.
In a maximization procedure, it is equivalent to optimize a function
or the logarithm of it because the logarithm is a monotonically in-
creasing function which has the same minima/maxima as the origi-
nal objective in the problem.
Let θ be the set of parameters with θ = {W, b, c}. We then denote
LL(θ|D) to be the data log-likelihood, that is the natural logarithm
of the data likelihood L(θ|D).
Assuming that the samples were all drawn from the same underly-
ing probability distribution and being independently and identically
distributed (i.i.d), we can make the following derivations:

L(θ|D) = max
θ

(
P(v, h)

)
(11)

L(θ|D) = max
θ

N

∏
i=1

(
P(vi, h)

)
(12)

LL(θ|D) = max
θ

N

∑
i=1

log
( e−E(v,h)

∑i,j e−E(vi ,hj)

)
(13)

LL(θ|D) = max
θ

N

∑
i=1

(
log ∑

h
e−E(vi ,h) − log ∑

v,h
e−E(v,h)) (14)

We can see that the log-likelihood is the summation of two similar
terms.
However, they are very different due to the summation over v in the
second term. For the first term we have to sum over the energies for
the data and hidden units. We remember from the previous section
that this means actually just counting the interactions between V and
H, weighted with W. The second term, however, is more complex
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as it involves the joint probability distribution over v and h. This is
where we need the Block Gibbs Sampling mentioned earlier in order
to get a sample from that distribution.

3.2.2 Learning in RBMS

To learn the parameters of an RBM, we have to calculate the derivative
of the (log-) likelihood function. Because the exact gradient cannot be
calculated analytically, we will use the gradient descent algorithm from
chapter 3.1.2 to iteratively increase the likelihood of the data.

Following the derivations of Fischer et al in [16], we can write the
derivative of the log-likelihood function in the following way:

∂LL(θ|v)
∂θ

=
∂

∂θ

(
ln ∑

h
e−E(v,h)

)
− ∂

∂θ

(
ln ∑

v,h
e−E(v,h)

)
(15)

= −∑
h

e−E(v,h)

∑h e−E(v,h)

∂E(v, h)
∂θ

+ ∑
v,h

e−E(v,h)

∑v,h e−E(v,h)

∂E(v, h)
∂θ

(16)

= −∑
h

Pr(h|v)∂E(v, h)
∂θ

+ ∑
v,h

Pr(v, h)
∂E(v, h)

∂θ
(17)

The last line of our calculation used the following equality:

Pr(h|v) = Pr(v, h)
Pr(v)

=
1
Z e−E(v,h)

1
Z ∑h e−E(v,h)

=
e−E(v,h)

∑h e−E(v,h)
(18)

Remember that our hidden variables hi are in fact random variables
with binary outcomes. Hence, the derivative in equation 17 is the
difference between two expected values. In the first term of 17, we
sum over all RVs in H and multiply the probability of the unit being
activated with the derivative of the joint energy function w.r.t. θ.
Earlier in section 3.2.1, we have seen that the energy mainly counts
the pairwise activations of visible and hidden units. So the derivative
of the energy with respect to W gives us:

∂E(v, h)
∂W

=
∂

∂W
vTWh = vhT (19)

Thus, the first term of our partial derivative is simply the expected
value of the pairwise interactions between visible and hidden layer.

However, the second term of the partial derivative is much more com-
plex, as it involves the joint probability instead of the conditional
probability. It can be written as the same expected value as the first
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term, but under the models probability distribution.
Thus, we can write the gradient as:

∂LL(D|θ)
∂θ

= −E
[
vh
]

data + E
[
vh
]

model (20)

This rather convenient notation could already be seen in equation 14

because of the summation over only the hidden units in the first term,
and the summation over hidden and visible units in the latter term.

Before we try to calculate the derivative of the models expected value,
a more detailed look at equation 20 will give us an intuition of what
the RBM is trying to learn. In the first phase, dubbed positive phase,

Figure 11: An example 1-D energy surface before and after the update
of the parameters. The energy decreases where the data-
point is located but increases at positions where the model
has high energy.

the energy is pushed downwards for the data, while in the negative
phase, the energy is pulled up for the joint probability.
This means that the space where the data is located becomes more
probable, while the areas of the energy function where other possible
data (but data that is not in the training set) is located, increases. This
way, combinations of visible units that do not (or rarely) occur in the
training data will become less probable.
With an RBM that is fully trained, these two phases are equal and
thus cancel each other out.

The first part of equation 20 can be computed easily, using equation
9. It is simple counting how often a specific visible unit was activated
together with a hidden unit.
To calculate the expected value for the model, as we have seen earlier,
we have to sample from a very complex probability distribution.
Luckily for us, obtaining a sample from a complex distribution is
often less complicated than calculating the distribution itself. In our
case, we can use block gibbs sampling to obtain a sample from the
models distribution.
This approach works in cases where it is difficult to obtain samples
from a joint distribution, but it is relatively easy to get samples of a
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conditional distribution. As it turns out, our setting is a somewhat
perfect application for gibbs sampling because we can easily get the
conditional probabilities for the hidden layer, given the visible layer
and vice versa.
Thus, we can first calculate the probabilities for H, given V, and then
do the opposite to obtain a sample of V, given H.

Sampling theory promises us, that when we repeat this alternating
sampling for a long time, we will eventually reach the state of ther-
mal equilibrium, or the stationary distribution of the gibbs chain.
This stationary distribution is then a sample of the true joint proba-
bility distribution Pr(v, h). The only problem that remains is that it
can take a very long time for the chain to settle in thermal equilib-
rium and this renders the classical log-likelihood based RBM training
algorithm practically useless.

3.2.3 Contrastive Divergence

Obtaining a true sample from the joint probability distribution Pr(v, h)
is hard but we only need it to calculate the gradient from there. To
estimate the direction in which the gibbs chain is going from a data
point, it seems to be sufficient to calculate one step in the gibbs chain
to get an approximation that gives reasonable results in practice.[21]
This shortcut to just calculate one or two steps in the gibbs chain is
called Contrastive Divergence and provides the first efficient algorithm
to train RBMs [23].

When we only run the gibbs chain for one iteration, the process is

Figure 12: An example of an RBM with two hidden and 3 visible units.
The gibbs chain is only run for one iteration.

called CD 1 (as depicted in figure 12). It is often useful to start with
only one iteration and increase the number of steps gradually.[21]
To interpret the meaning of the gibbs chain’s length, we can imagine
the models energy surface. The data-point is located somewhere on it
and from there we start running the chain. With each step, we get
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away from the data-point and follow the gradient on our way. When
we only use CD 1, we cannot reach far from our data-point with the
gibbs chain. The energy gets raised somewhere in close proximity to
the data-point.
But reaching further might be necessary because we can have an en-
ergy minimum somewhere far from the data point and the model
tends to assign a high probability to that point. The training process
would normally gradually increase the energy at this point far away
from the training data and thus decrease its probability. But when we
can’t reach it with contrastive divergence, this increase of the energy
never happens.
When we now see new data for which we want to calculate the poste-
rior probability and this new data is located somewhere at this energy
minimum that we couldn’t reach with our gibbs chain during train-
ing, we get high probabilities for our new data.
However, this should not be the case as this new data is nothing alike
the training data (otherwise it would have been closer to the other
data points).

3.2.4 Persistent Contrastive Divergence

In the previous paragraph, we saw that contrastive divergence is only
increasing the energy at points on the error surface which are rela-
tively close to actual data points. When the test data is very different
from the training data, we might assign low energy (and thus high
probability) to this data, even though it does not belong to the proba-
bility distribution where the training data originated from.
This is undesired behavior and can be overcome using an algorithm
very similar to contrastive divergence, called persistent contrastive di-
vergence.
The main idea behind this technique is to not start the gibbs chain
from the data point, but rather from a point on the energy surface
which is known to be at an energy minimum from the past. As it
happens, such points are exactly those, for which we rose the energy
when we were looking at the previous data point [53].
That means, we simply store the result from the gibbs chain for our
current data point and then reuse this as beginning for the next gibbs
chain.

The points on the energy surface are called fantasy particles and are
located in areas to which the model would assign high probabilities.
They can be interpreted as the models convictions. Since we initial-
ize an RBM with random initial weights, these convictions might be
wrong, and therefore we try to increase the energy in these areas.

33



statistical methods

A more philosophical interpretation of the negative phase of the en-
ergy gradient is given by Geoffrey Hinton in [22]. He sees the whole
negative phase (also in standard contrastive divergence) as an "un-
learning" taking place. This way, similar to humans dreaming, the
model would focus on correlations in the data that are important and
often occur, while "forgetting" other connections which seem less im-
portant.
However, as described previously, the negative phase also makes
sense in a mathematical interpretation of the process.

3.3 convolutional rbms

We now have a model for which we can maximize the data likelihood.
But until now, this model has a few drawbacks that we need to tackle.
The first and most important one is the problem of having too many pa-
rameters to tune. Imagine the application of RBMs to DNA sequences.
We would have at least one visible unit for each letter of the sequence,
which is only possible when modifying the original (binary) algo-
rithm to deal with more than only ones and zeros.
Because of the fully connected nature of an RBM, we have Nv × Nh
many connections, where Nv is the sequence length and Nh is the
number of categories we want to find. Learning this matrix means
learning many parameters which requires a huge amount of data to
avoid overfitting.
The second problem we have to tackle is the lack of translation invari-
ance or at least equivariance. Finding certain combinations of letters
in a DNA sequence repeatedly is not achieved by the standard RBM
at all.
And lastly, the interpretability of the model is important for our appli-
cation. But there is no meaningful interpretation for the hidden layer
in the normal RBM setting.
To overcome these problems, the image recognition community has
been using convolutional neural networks very successfully in the
past and also for RBMs, a convolutional counterpart has been devel-
oped by Ng et al. in [32].

The convolutional variant of the restricted Boltzmann Machine is very
similar to the extension of neural networks to convolutional neural
networks (cNNs). To have fewer parameters when the input dimen-
sions get large, the layers are no longer fully connected.
Instead, the weights form matrices of predefined size and "slide" over
the input data. Thus, the same weights are used at different positions
in the input. When dealing with DNA sequences, the weight matri-
ces (sometimes called kernels) correspond to motifs. The hidden layer
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then can be seen as motif hits for a particular kernel.

3.3.1 The 2-D Convolution for images

Convolution for images is a filtering operation of two matrices that
are multiplied with each other in a special way. In a convolution
operation, denoted by ∗, we have two different kinds of matrices.
The first is the image, which in the cRBM setting will be the data,
denoted as I. The second kind of matrix is the so-called kernel which
is typically much smaller than the image and denoted by K.
The kernel is first turned horizontally and vertically. Then for each
pixel in the image, the kernel is multiplied element-wise with the
kernels center being located at the chosen image coordinate.
Types of convolutions differ in how they deal with the images edges.
In a valid convolution, the multiplication is only performed for those
image pixels that are far enough "inside" the image such that the
kernel can be applied whereas in padded convolutions, the image is
padded with zeros or ones. Let I ∈ (M× N) and K ∈ (U ×V). Then

Figure 13: A schematic view of the convolution operation. The kernel
is first flipped and then applied to the image in a "sliding"
fashion.

C = V ∗ K is defined as:

Cx,y =
U

∑
u=0

V

∑
v=0

Ix−u+1,y−v+1Ku,v (21)

The resulting matrix C ∈ (M−U + 1, N −V + 1) is smaller than the
original image. We also directly see that, when both I and K have the
same number of rows, C becomes a vector. We use this property in
our setting with DNA sequences later.

Another operation that will become necessary for the definition of
cRBMs is the cross-correlation filtering operation. It is similar to the
convolution but flips the kernel before applying it. It is thus the same
operation as "sliding" the kernel over the image without flipping the
kernel at all.
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3.3.2 Definition of the cRBM

With the convolution operation at hand, we can now formulate the
extension of the conventional RBM to the convolutional RBM. To
achieve that, we only have to modify the weight matrix W. Instead of
simply connecting V and H with a fully connected matrix, we now
have K kernels that are convoluted with V.
Each of these filtering operations produce a vector hk and thus H ∈
{0, 1}K×(N−M+1) is a matrix with rows hi.
With these modifications, we can write the conditional probabilities
in the following way by derivations similar to those in [16]:

Pr(hk
j = 1|v) = σ(vi ∗ W̃k + bj) (22)

Pr(vi = 1|h) = σ(∑
k

Wk ∗ hk + c) (23)

where W̃k indicates that the kernel is flipped horizontally and verti-
cally. With these conditional probabilities at hand, we can perform
up- and down-sampling. To apply the contrastive divergence algo-
rithm of chapter 3.2.3, we only have to calculate the gradient of the
data-log-likelihood.

3.3.3 Learning in cRBMs

In cRBMs, the energy function is defined slightly different than in
the standard RBM scenario. The interaction between the visible and
hidden layer can be written as filtering operation and thus, the energy
function becomes:

Ec(v, h) = −
K

∑
k=1

hk(W̃k ∗ v)−
K

∑
k=1

bk ∑
i

hk
i − cT ∑

i
vi (24)

Calculating the derivative of this new energy function yields us:

∂Ec(v|θ)
∂Wk

= ∑
k

Pr(hk|v)
∂Ec(V, hk)

∂Wk
(25)

And for the derivative of the joint energy, we get:

∂Ec(V, hk)

∂Wk
= −(v ∗ hk) (26)

This means, we can express the derivative of the joint energy function
as a convolution operation. Thereby, we can re-formulate the calcula-
tion of the derivative from section 3.2.1 and use the derivations made
for the standard RBM with minor adaptations.
By using the energy function from equation 24 and the derivative
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of the log-likelihood from equation 17, we can re-write the expected
value for the two phases similarly to equation 20.

∂LL(D|θ)
∂θ

= −E
[
v ∗ h

]
data + E

[
v ∗ h

]
model (27)

This result is again surprisingly simply and very convenient. We can
express almost all of the operations needed for learning as convolu-
tions for which many libraries provide highly optimized code. They
can also make use of massively parallel hardware architectures and
especially of GPGPUs.

3.3.4 Applying cRBMs to DNA sequences

Figure 14: Convolutional layer of a cRBM. The convolution produces
a smaller hidden layer H that contains the motif hits. We
see that the DNA sequence is encoded as one-hot-matrix.
Furthermore, the kernel is equivalent to a position-weight-
matrix and can be visualized as web-logo.

We mentioned in chapter 3.3 that the transition from RBM to cRBM
would also provide us with a solution to the problem of DNA se-
quences to binary input. This solution is called the one-hot-representation.
Each of the nucleotides from the DNA alphabet gets a four-dimensional
vector assigned, and the one-hot-representation is simply a matrix
V ∈ (4× N), where N is the length of the sequence. The mapping
from letter to vector is defined as follows:

A 7→


1
0
0
0

 , C 7→


0
1
0
0

 , G 7→


0
0
1
0

 , T 7→


0
0
0
1


The resulting matrix has in every case four rows only. When we
define all kernels also to be of four rows and M columns, then the
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hidden layer becomes a vector per kernel and is now much easier to
interpret than before.
The kernels now correspond to motifs, while the hidden layer contains
motif hits. A motif is a short and usually repeating pattern in DNA
sequences. It is assumed that many motifs have biological functions,
such as being a binding site for a certain DNA binding protein.
This suddenly makes the cRBM an interpretable model in which the
weights correspond directly to position-weight-matrices and the hid-
den layer corresponds to the presence of a particular motif in the
sequence.
When we now apply probabilistic max pooling to the hidden layer,
we get probabilities for each of the units in H to be active or not
while neighboring units are combined to decrease the size of H.

To summarize, by going from a standard RBM to convolutional RBMs
we obtained a model with fewer parameters. Also, we gained trans-
lation equivariance. This means that the hidden layer has a slightly
different structure than with conventional RBMs. The hidden layer
now corresponds to a matrix in which the rows represent the differ-
ent kernels, and the columns represent nucleotides on the DNA to
which the motif detector was applied.
However, we have the problem of over-completeness now. Because
we usually want to use more than one motif in the cRBM, the hidden
layer is much larger than the input. This is a general problem because
the model might just learn trivial representations of the data and not
features that generalize well. To develop a model that does not overfit
the data, we still have to apply some tweaks to enforce sparsity in H.

3.4 enforcing sparsity

As we have seen, it is crucial for successful learning to enforce spar-
sity in the hidden layer. This will not only result in better recon-
structions of the data but especially in better representations of the
sequences in H.
In the following section, I will give an overview of different methods
for sparsity enforcement that we implemented.

3.4.1 Probabilistic Max Pooling

Pooling is a very popular technique for sub-sampling from a convo-
luted image in image recognition. To move from very specific and
small regions in the image, it is typically desired to have a pyrami-
dal structure and larger contexts in higher layers of any convolutional
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neural network (cNN). Pooling sub-samples an image by a predefined
size and thus makes it smaller. The result from the convolutional
layer is therefore divided into distinct regions. From those regions,
only one value "survives" the pooling step. This may be the maxi-
mum (dubbed max pooling) or the mean (dubbed average pooling).
The resulting image may only be one quarter of the size of the origi-

Figure 15: Traditional max pooling and probabilistic max pooling in
comparison. We see that the traditional approach is de-
terministic while the probabilistic approach only samples
from the softmax distribution within each unit. The addi-
tional units represent that there is no activation at all in the
pooling unit. Note that the numbers in red are chosen by
the sampling step.

nal (when using pooling with bins of size 2× 2).
However, that approach would fail drastically for cRBMs due to the
stochastic environment. When we only calculate probabilities, taking
the maximum probability will result in deterministic behavior which
is unwanted for our model.
Lee et al. [32] described an algorithm, called probabilistic max pooling
that calculates the probability for a unit in H to be activated, given the
other units from the pool. Then sampling takes place and randomly
draws one of the units or none of them.
This way, we have at maximum one activated unit per cell while main-
taining the probabilistic nature of the RBM. Technically, a softmax
distribution is calculated for each of the cells and the probability for
none of the units to be activated can be written as:

Pr(P(k)
i = 0|v) = 1

1 + ∑α ePr(h(k)α |v)
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while the probability for the other units is:

Pr(P(k)
i = 1|v) = ePr(h(k)i |v)

1 + ∑α ePr(h(k)α |v)

Note that P does not indicate a probability but the pooled layer that
we can imagine as being on top of the hidden layer H. α stands for
the index within a cell of pooled units.

3.4.2 Regularization

We can enforce sparsity of the hidden layer not only by pooling to-
gether units. Instead, we can constraint adjacent regions to only have
a certain number of hits, and we can also pool vertically to enforce
competition between different kernels due to the locality properties
of pooling.
While this is very useful to get clearer motifs, we still lack a possibil-
ity for regularizing our model to only have a particular global ratio
of motif hits.

Therefore, we introduced a sparsity constraint that acts as regularizer.
It forces the partial derivatives of the probabilities to meet a certain
target. This way, our objective is to maximize the likelihood of the
data while forcing the weights to only permit ρ percent of the hidden
units to be activated. More formally, we get:

Reg(V) :=
K

∑
k=1

(
ReLu(E[h(k)|V]− ρ)

)

The regularizer is added to the gradient calculation as Lagrange mul-
tiplier just like in any other machine learning setting. We then get the
new update rule for the gradient descent algorithm:

W(k) = W(k) − η

(
∂LL(D|W(k))

∂W(k)
− λ∇W(k)Reg(V)

)
(28)

3.4.3 Initializing the weights

A problem that may arise when using regularization of the objective
function (the data log-likelihood in our case) is that the gradient might
only follow the regularization term at the beginning of the training.
This can slow down the learning significantly and might also be detri-
mental to the overall result as the quality of the learning strongly de-
pends on the initial configuration of an RBM.
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Thus, the initial weights have to be chosen very carefully. In our ap-
proach, we tried to initialize the weights randomly from a gaussian
distribution but took great care that the activation in H is initially
already sparse. This means we want the sum of activations to be ap-
proximately the same as ρ.
Drawing a matrix of standard gaussian numbers which is then used
in a 1-D convolutional setting is equivalent to drawing as many RVs
from it as there are columns in the matrix. Since the addition of gaus-
sian RVs is the same as adding their mean and variance, we draw
from the following distribution:

ρ ≈ ∑
h∈H

Pr(hk|v)

ρ ≈ ∑
h∈H

so f tmax
(

corr(v,N (0, k))
)
+ bk

where k is the number of columns (or k-mers when in our motif detec-
tion setting). Because of the standard normal distribution, the mean
doesn’t shift and the variance simply adds by one with each addi-
tional random variable. Our goal is now to set the models bias bk in

Figure 16: The desired threshold ρ. We want to compute bk in order
to know how the initial intercept of the model should be
set. The samples then only come the shaded area.

a way that only ρ percent of the units in H are active. The quantile
of a gaussian is the inverse function of the cumulative distribution
function. It can be interpreted as how far we have to move a distribu-
tion in order to get a certain amount of the population to be above a
certain threshold.
Thus, we get the following equation on how to set the initial bias of
our model:

bk = Φ−1(ρ,N (0, k))
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This method does not necessarily yield very accurate activation in H
because the data is not uniformly distributed. But it gives a good
enough estimate such that the learning starts already during the first
couple of iterations.
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4

E X P E R I M E N T S & R E S U LT S

In the following chapter, I will present the results from several ex-
periments. For this thesis, we focused on the three main problems
defined in chapter 1 when conducting the experiments.
The implemented cRBM model contains all of the extensions to the
original algorithm that were presented in chapter 3, including persis-
tent contrastive divergence, probabilistic max pooling, and regular-
ization.
This chapter is organized as follows: First, we will present the train-
ing algorithm and details of the implementation. We will then look
at the results from three experiments. We monitored different aspects
during the training to be able to answer the following questions:

1. When learning features of DHSs in an unsupervised way, does
the cRBM recover known transcription factor binding sites?

2. Can the cRBM be used in a supervised setting to classify tis-
sue specific DHSs by looking at the trained probability distribu-
tions?
How well can we classify with this generative model?

3. Is it possible to train a cRBM model on a control data set from
PAR-CLIP experiments and then find biases?
Could we then further use this trained model to classify se-
quences into background and signal, thus identifying sequences
that were pulled by PAR-CLIP erroneously?

4.1 implementation & hardware details

I decided to use the Theano framework [6] and the Python program-
ming language to be able to train the model in an efficient way while
having the means of a high-level programming language at hand.
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Python is widely used for scientific computing and has thus many
packages for data reading, processing and visualization already im-
plemented. Also, some packages for biological applications, like the
generation of web-logos [12] and reading fasta-files [9] were freely
available, making Python the programming language of choice.
On the other hand, Theano allows for the easy and highly optimized
execution of code on a GPGPU which can vastly accelerate execution
of the training. Especially, convolutions can be calculated massively
in parallel by modern GPGPU architectures and yield speedups of 25-
50 times when using latest drivers for the graphics card together with
the CUDA language. Since training involves especially many convo-
lutions, using the NVIDIA CUdnn library can speed up the process
again by up to 70 times.[8]

In Theano, programming is done by defining a computational graph at
first by using special operations that belong to the framework. This
graph is later compiled to a function that can then be called just like
a normal Python function. The advantage of that approach is that
Theano can optimize the graph for different objectives, such as nu-
merical stability or efficiency. Furthermore, the framework can make
use of GPUs when one is available, but it still works when there is
none.
Numerical stability was necessary for our project because of the vast
use of softmax-functions prior to sampling. For the experiments, we
had a server with two Nvidia GTX 980 graphics processors available.
However, at the time when we conducted the tests, Theano did not
offer capabilities of using two GPGPUs at the same time by sharing
memory between them. Thus, we only took advantage of one of the
cards but were able to train multiple models at the same time. The
second major benefit of Theano lies in the automated calculation of
derivatives which is a huge advantage when using standard gradient
based methods. However, due to the gibbs sampling part in restricted
Boltzmann machines, this option was not available for us. For such
a complex partial derivative to be computed automatically, Theano
would have to know when the gibbs sampling reached a stationary
distribution which is hard and very specialized.
Furthermore, the shortcut of contrastive divergence no longer cal-
culates the exact partial derivatives but rather an approximation to
them. As a consequence, I could not benefit from Theanos capability
to calculate gradients automatically but had to implement contrastive
divergence myself.

The code consists of several applications, each for a different pur-
pose. While the main functionality for training and evaluating cRBM
models on sequences is located in one file, so called observers can be
added to monitor the training progress. These are small classes that
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implement an interface and score the model at a given time point
during training. Observers can, for instance, calculate the reconstruc-
tion error of the model, given a set of parameters. Monitoring this
gives us valuable information on overfitting that might occur during
training.
This way, a modular structure of the code is maintained, and new
observers can easily be implemented when desired, and the imple-
mentation of the cRBM itself remains separate.

4.2 the general training procedure

Learning the kernels or motifs of a cRBM requires sampling the hid-
den layer first with a data vector clamped to the network as described
by equation 22. The work-flow to calculate the hidden layer is de-
picted in figure 17.

Figure 17: The general work-flow of a forward pass in our cRBM
model. The input batches are first convoluted with the
weight matrices, forming multiple layers of activation. The
result is then transformed into probabilities with probabilis-
tic max pooling. From there, H can be sampled.

The backward pass can be thought of as reconstruction of the origi-
nal data (the sequences) from its representation (linear combination
of motifs). Equation 23 describes how the visible layer can be recon-
structed from the hidden layer. Analogously to the forward pass, this
computation can be described as a convolution operation and thus
can be calculated efficiently on a GPU. Figure 18 depicts the work-
flow of the backward pass.
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Figure 18: Workflow of the backward pass. The probabilities in H are
convoluted with the weight matrices to form a multinomial
distribution over the letters from which a sequence is then
sampled.

As already stated in chapter 3.3.2, the derivative of the conditional
energy function can be expressed as a convolution operation. The
partial derivatives of the data expected value can be computed as
soon as H0 is available, that is when the upward pass was calculated.
Algorithm 2 shows the whole training procedure in detail. Once the
statistics for the data - the positive phase - are computed, we run the
gibbs chain for k steps to obtain Hk iteratively applying the forward
and backward pass. The prob_max_pooling operation partitions a ma-
trix into small units of a fixed size and calculates a softmax in them
as described in section 3.4.1. The categorial operation samples from
a matrix, interpreting each column as different states of one random
variable. Given a matrix M ∈ Rm×n×k, we then get m × n samples,
reducing the last dimension of the matrix. Finally, the so f tmax oper-
ation computes probabilities from raw counts per column (over the
different letters of the alphabet) according to equation 4.

Algorithm 2 CRBM Training

1: H(0) ← prob_max_pooling(V ∗ W̃ + b)
2: H(0)

sample ← categorial(H(0))

3: Graddata ← V ∗ H(0) . Calculate data gradient
4: for i = 1, 2, . . . , CDk do . Contrastive Divergence Iterations
5: V(i) ← so f tmax(∑K

k=1 H(i−1) ∗W + c)
6: V(i)

sample ← categorial(V(i))

7: H(i) ← prob_max_pooling(V(i)
sample ∗ W̃ + b)

8: H(i)
sample ← categorial(H(i))

9: end for
10: Gradmodel ← V(i)

sample ∗ H(i) . Calculate model gradient
11: W ←W + η(Graddata − Gradmodel)
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4.2 the general training procedure

We designed our training algorithm to always process multiple se-
quences at once in so-called mini-batches. The solution is updated
after one mini-batch has been processed. The size of each mini-batch
depends on the number of data points available and is recommended
to rank between 20-100 data points at once [21]. The sequences should
be randomly ordered before training because mini-batches of similar
sequences could guide the derivatives in a direction which is not nec-
essarily corresponding to the direction of the actual gradient. The
data is probably ordered due to its pre-processing and DHSs in sim-
ilar loci are grouped together. To avoid this, a random shuffling
should always be applied to any training data when one of the as-
sumptions of the algorithms is that the samples are independent and
identically distributed (i.i.d.).

Training consists of multiple epochs and during one epoch all sequences
are shown to the model once. In our experiments, we typically trained
the model for approximately 300 epochs and observed a saturation in
most of the cases.
The reconstruction rate and free energy of the model were measured
after each epoch for a given training and test set while the test set
was never shown to the model. The reconstruction rate denotes the
average number of nucleotides that are correctly retrieved after one
iteration of the gibbs chain with the current parameters. Figure 19

shows the reconstruction rate and free energy for an exemplary train-
ing.
The free energy is a measure that is similar to the negative log-likelihood
(NLL) of the data, given the parameters of the model. This value
should drop if the learning is successful. The free energy is the most
direct measure of the real data-likelihood that we can get because the
partition function (Z) is not easy to estimate. Recall the definition of
Z as given by equation 7. To know the correct value of Z, we have
to sum over all possible combinations of vi and hi for all i, j in the se-
quence and the hidden layer. This is not feasible for larger sequences.
While methods exist to estimate the partition function, for relative
comparisons we are only interested in the NLL. In such an equation,
the partition function does not matter as shown by equation 29.
Since both values were monitored for the test and a sub-sampled
training set, detecting overfitting would have been possible. How-
ever, we never observed such a divergence between test and training
values.
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Figure 19: A typical result from monitoring reconstruction error and
free energy during training. The initial rise (or drop respec-
tively) of the free energy could originate in the regulariza-
tion where the algorithm only tries to fulfill the sparsity
constraints and does not focus on minimizing the free en-
ergy yet.

4.3 motif detection with the crbm

In the first experiment, we wanted to assess whether the cRBM was
able to successfully reconstruct motifs of transcription factor binding
sites from data where such binding sites were known.
We trained the convolutional restricted Boltzmann Machine on stem-
cell DHSs that were extracted from CHiP-seq experiments in 2011.
The data is online as part of the ENCODE project [11]. Known tran-
scription factors for eukaryotic stem cells include oct4 and sox2 and
their binding preference is recorded in the JASPAR database [38].
During the training, we monitored the reconstruction rate and free en-
ergy after each epoch as depicted in figure 19. Indications for success-
ful learning are a decrease in the free energy and a gradual increase in
the reconstruction rate. It is evident, however, that the reconstruction
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4.3 motif detection with the crbm

rate will never approach 100% due to the sampling noise and the fact
that the cRBM is supposed to only learn over-represented patterns in
the sequences.

We also monitored several other statistics during learning, such as the
average information content in the motifs or the average number of
hidden units activated by a sequence. While we could observe a ris-
ing information content (IC) during training, this value does not tell
us much because it can temporarily decrease for the model to find
better motifs.
After the training, we visualized the motifs as web-logos and com-
pared them to known motifs from the JASPAR database.

4.3.1 Detecting motifs in eukaryotic stem cells

When training the cRBM on eukaryotic stem cell data, we were able
to detect the oct4 transcription factor binding site which is known to
bind in stem cell DHSs. Repeating the training several times with
different random initializations always yielded similar results, indi-
cating both, a strong presence of the motif and a certain robustness
of the algorithm. This is important because RBMs, like all kinds of
neural networks, solve a non-convex optimization problem and con-
verge to local minima. Therefore, they strongly depend on the initial-
ization.
The choice of the right intercept (or bias b) was crucial, however, to
get reasonable results when using regularization. A technique to ap-
proximate an intercept for a given desired sparsity is explained in
detail in chapter 3.4.3.

The convolutional RBM algorithm only detects fixed length motifs
(the kernel length has to be the same for all kernels for computa-
tional efficiency).
Furthermore, we are not guaranteed that the pattern is not split up be-
tween multiple motifs which would make it hard to see even though
it has been learned successfully. Parts of a motif, especially those that
have a low IC can even be considered noise because they are not over-
represented in the data due to the variability of the protein to bind
slightly different nucleotides at a given position.
A stacked approach of multiple cRBMs upon each other might fix this
problem since, in such a case, we would look out for interactions and
patterns between the motifs we found in earlier stages of the network.
The experiment with eukaryotic stem cell data was conducted with
3997 DHS samples and a kernel length of 11. The convolutional RBM
was trained for 300 epochs (every sequence was shown to the model
300 times in the same order), using 25 different kernels.
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Figure 20: All of the motifs that were learned by the cRBM for the
stem cell data. The number of motifs to learn (20 here) and
the length of each motif (11 here) are hyper-parameters of
the model.

In figure 20, we can see all the motifs extracted by the cRBM. It is
especially interesting to note that some motifs seem to focus on very
few positions, while the remaining positions have a very low IC. Oth-
ers appear to be absorbing very general structures in the data set,
meaning that a hit from that motif might indicate some general struc-
ture of DHSs, such as a high GC-content. Our model only captures
patterns in comparison to randomly distributed nucleotides which is
why some motifs will always represent patterns that are present in
all genomic sequences.
Finally, we see some motifs with high IC that do very likely repre-
sent transcription factor binding sites. When we take the 23rd motif
from figure 20, we can see that it corresponds to the oct4 binding site.
Figure 21 shows a comparison of the motif found by the cRBM with
the one from the JASPAR database. The oct4 motif from the JASPAR
database is of length 15, but the most relevant parts of it could be
captured by our model.

We plugged the position weight matrices from figure 20 (PWMs) into
TOMTOM [20], which is part of the MEME suite. This online tool
compares position weight matrices from different databases based on
statistical tests. The first hit of the tool is depicted in figure 21 and has
an overlap of eleven k-mers as well as a p-value of 2.9× 10−12. The
p-value is a statistical test to measure how extreme an observation is,
given a model (often called null hypothesis).
In the case of comparing two motifs, the p-value states the probability
that the match of two position weight matrices occurred by chance
when the one motif is assumed to generate the observations. A small
p-value indicates high similarity between the motifs while a high p-
value indicates low similarity.
With a significance level of 0.05 (which is common in literature), the
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4.3 motif detection with the crbm

Figure 21: Qualitative comparison of the JASPAR motif for Oct4 and
the one found by our model. Note that our motif is only
eleven base-pairs long, while the JASPAR motif contains
15 nucleotides.

two motifs are very similar. However, the similarity becomes already
evident when considering the web-logos depicted in figure 21.
Furthermore, we also extract the reverse complement of the motif
quite well without ever having implemented to search for that in the
sequences. The reverse complement was extracted by motif 20 (fourth
row, fifth logo) in figure 20 and has a p-value of 6.87× 10−12. Due to
the difference in length when comparing it to the JASPAR motif, the
two motifs highlighted in figure 20 do not look like complements of
one another.

The results of the experiment show that the cRBM is capable of detect-
ing meaningful motifs without explicitly looking for it. The evolution
of each of the kernels only comes from minimizing the energy of the
data.
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4.3.2 Detecting motifs in fibroblast lung cells

We conducted the same experiment on data from lung fibroblast cells.
As with the oct4 data set, the sequences come from the ENCODE
database and are freely available. We expect the mafk transcription
factor to bind to long-fibroblast-specific DHSs and therefore, the mafk
motif should be over-represented in this data set.

When comparing it to the known web-logo from the JASPAR database,
we can see immediately that the web-logos extract more or less the
same PWM with the flanking regions of the motif being of different
sizes. However, both motifs do not have a high information content
in these flanking regions.

Figure 22: Qualitative comparison of the JASPAR motif for mafk and
the one found by our model. Note that our motif is only
eleven base-pairs long, while the JASPAR motif contains
15 nucleotides.

When plugging the results from our experiment into TOMTOM, we
see that the PWM depicted in figure 22 is very similar to the mafb tran-
scription factor binding site. While the first two hits in the JASPAR
database are variants of mafk, called maff & mafg, it is almost impossi-
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ble to distinguish between the binding sites of the maf-protein family
[25]. The mafk TFBS has a p-value of 3.27× 10−7 which is in a similar
range to the one for mafb. As before with the oct4 data, the cRBM also
extracted the reverse complement of the mafk TFBS, listing it already
as the second hit in the tool’s ranking.
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4.4 classification of tissue specific dhs

In the next experiment, I wanted to see if the cRBM can be used for
classification and how it compares to other well-known classifiers.
That said, the convolutional RBM is a generative model that com-
putes probability distributions over data and not a classifier. It can,
for example, not take into account negative data like a support vector
machine or neural networks.
Thus, the cRBM is not expected to achieve maximum accuracy when
trying to predict which tissue a certain sequence comes from. But
still, we wanted to know how well the model learns specific features
of the DHSs for a certain tissue type.
In our experiment, we compared the cRBM to a first order Markov
Model (explained in section 2.1.2) and a Support Vector Machine (ex-
plained in section 2.1.4). While the Markov Model should symbolize
a lower bound (because it only counts frequencies), the SVM is ex-
pected to perform better in terms of classification than our model
when increasing the size of the data representations.
Furthermore, we compared different cRBM models with different
number of motifs to see whether we observe saturation or overfit-
ting of the model.
For the experiment, we once again used the data sets from the previ-
ous two experiments, namely the eukaryotic stem cell data and the
fibroblast lung cell data.

4.4.1 Comparing the free energy of a trained model

The goal was now to train two different cRBMs that would learn
on one of the two data sets each. After successful training of both
convolutional RBMs, we compared the free energy of both of them.
The subtracted free energy is similar to the data log-likelihood-ratio
of both models and can be defined as follows:

F (D) = − log

(
∑
h

e−E(D,h|Θ)

)
(29)

The difference between the free energies of both models can be writ-
ten as:

∆F (D) = FModelA(D)−FModelB(D) (30)

= − log

(
∑
h

e−E(D,h|Θ1)

)
+ log

(
∑
h

e−E(D,h|Θ2)

)
(31)

= log

(
∑h e−E(D,h|Θ2)

∑h e−E(D,h|Θ1)

)
(32)

54



4.4 classification of tissue specific dhs

The data D contains sequences from both classes that were never
shown to any of the two models during training. This test set was
now evaluated using the difference of the free energies from equation
32.

Figure 23: Histogram depicting the difference in free energy for test
sequences of both tissue types. We can see that a naive
bayesian classifier could yield good classification accuracy.

Figure 23 shows a histogram of the test data for both classes. When
we do actual classification depending on whether the difference of
the free energies is positive or negative, we can compare the cRBM to
other methods.
A ROC curve shows the proportion of true positives to false positives.
An optimal classifier would reach the point in the top left corner
while complete chance is on the diagonal. Figure 24 compares the
cRBM with different importance levels for the sparsity constraint to
other models. As expected, the first order markov model is the weak-
est classifier in figure 24. This might be due to the markov property
that only picks up relationships of two successive nucleotides. On the
contrary, the support vector machine tries to find the best separation
between the two classes by using both, positive and negative exam-
ples. The data is represented as 5-mers for the algorithm, such that
every input vector is of dimensionality 45. This can be interpreted
as a vector, containing the number of times every motif of length 5

is present in the data. The SVM should be the upper bound to the
capabilities of the cRBM because of the consideration of negative ex-
amples and its maximization of the margin.
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Figure 24: A ROC curve for different trained cRBMs compared to a
SVM with gaussian kernel and a first order hidden markov
model. While generally more motifs result in better classi-
fication, 20-30 motifs seem to be sufficient to capture all of
the important specificities for the data set.

However, it seems as if the convolutional RBM can classify almost as
well as the SVM with only around 20 motifs. This indicates that the
algorithm is learning a very economic representation of the data. The
fact that already 20-30 motifs seem to be enough to classify between
eukaryotic stem cells and fibroblast lung cells is a clear indicator that
the data representation learned is meaningful and also depending
strongly on the test set. That means that our model learns non-trivial
motifs which could easily be the case due to the over-completeness
of the representation compared to the sequence.

4.5 bias detection in par-clip experiments

So far, the tasks that we could solve with our method were already
solved with other techniques or could have been solved with su-
pervised methods, such as deep convolutional neural networks, pro-
vided the labels are available.
In this section, we want to analyze PAR-CLIP control experiments
and quantify the bias they might introduce. As opposed to the previ-
ous two problems where we expected the sequences to contain a high
signal, control experiments should contain much more noise and ide-
ally no signal at all. The features learned by the cRBM are expected
to reveal the abundance of RNAs in the cell at most.
Any features that we might detect represent a putative bias in the se-
quencing protocol. Such a bias could be detected and normalized for
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by using the likelihood probability of a sequence x given by Pr(x|θ).
In the previous section, we already used the free energy of two cRBM
models to discriminate between different tissue types. To detect bi-
ases in NGS experiments, we tried a similar approach by training
the cRBM on two different data sets. One originates from various
PAR-CLIP control experiments and the other comes from a target ex-
periment that was conducted with a particular target protein (PUM2)
and should have a much higher signal than the unspecific control ex-
periments.
These two models were then compared by using a test set of se-
quences from both data sets. We evaluated the free energy of both on
each of the models, yielding a free energy for background sequences
on the background model and vice versa. Evaluating these sequences
on the background model gives us a measure of how similar each
sequence is to the background. This gives us a measure of how simi-
lar a sequence is to the background. A normalization in peak calling
could be developed based on such a similarity metric.

Furthermore, the likelihood of the data to belong to the background
distribution can be used to see if a target PAR-CLIP experiment is
flawed. In such a case, the target distribution would have a mean
that is very different from the mean of the background distribution.

The data that the cRBM was trained on came from a fusion of mul-
tiple experiments and was not extracted by ourselves. BackCLIP is a
tool to identify common background in different PAR-CLIP data sets
[44] and the authors of it constructed a set of common background
which is the intersection between 19 different PAR-CLIP control ex-
periment data sets. Duplicates were removed in the process such
that the remaining sequences no longer reflect the abundance of RNA
transcripts in the data.
How the data is generated is explained in great detail in the supple-
mentary material of [44] and the sequences are freely available. We
use this common background to train the cRBM. Since the sequences
did not have the same length and most of the sequences were quite
short, we decided to pad them with sequences from the reference
genome (hg19). The length distribution of the data is depicted in fig-
ure 25. The sequences were preprocessed to have length 100 by using
the average between start and endpoint for each line in the bed file
and adding resp. subtracting 50 from both. Thus, the sequences all
have length 100 and are centered at the region from the bed file.
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Figure 25: The length distribution of sequences (in nucleotides) in the
common background data set. While short reads are more
common by far, they are less favorable for our analysis.

4.5.1 The PAR-CLIP Protocol

PAR-CLIP is a sequencing technique mainly designed to capture the
binding events of RNA-binding proteins (RBPs). It exploits the for-
mation of bonds between RBPs and the RNA when exposed to UV
light. For these formations of RNA and protein complex, the RBP of
interest is then captured by a specifically designed antibody.
Afterwards, the cell is lysed to break down the membrane of the cells
and the RBPs of interest are isolated by immunoprecipitation. Once the
solution has been washed to remove any non-specific RNA, only the
ensemble of RNA and RBPs of interest remain.
Adapters are now added to both ends of the RNA for various techni-
cal reasons. The adapters are needed for amplification of the RNAs
of interest but can also be used to "barcode" the samples with an arti-
ficial sequence added to both ends.
Finally, the RBP is digested and sequencing takes place. The result is
then a set of transcripts, usually represented as multiple strings in a
text file. Some of the steps of the PAR-CLIP protocol have not been
addressed here as they would exceed the limitations of the thesis.

It has been shown that biases in PAR-CLIP sequencing are present
and that control experiments with unspecific antibodies help to cir-
cumvent the problem [3]. In the usual setup, a control experiment is
conducted to complement each experiment with target specific anti-
bodies.
There are several ways to introduce a systematic bias to the protocol,
and random errors can occur as well. While the latter is less problem-
atic and easier to compensate by applying probabilistic algorithms in
the downstream analysis, systematic biases give rise to serious prob-
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lems [15].
Friedersdorf et al. have shown that background binding is both, com-
mon and systematic in PAR-CLIP experiments [17]. It results mainly
from the inefficiency of the UV light cross-linking procedure which
supports the formation of covalent bonds between RNA and protein.
Furthermore, all NGS techniques contain systematic biases as, for in-
stance, the favorisation of GC-rich content. [5]

Our goal is to learn a probability distribution over the background
and use it to examine sequences from target experiments. If the likeli-
hood of a sequence to come from the background distribution is high,
we might consider it a falsely sequenced transcript.

4.5.2 Identifying Motifs In Control Experiments

We trained our model on the data set described in the previous para-
graph. It is not expected that the model learns strong motifs for two
reasons. First, we have moved from the DNA domain to RNAs. RNA
binding proteins are shown to have a binding preference to a certain
sequence but also to the structure that the RNA forms in space [33].
Thus, the sequences do not show patterns as strongly as they would
in a DNA setting.
Furthermore, we are analyzing background which per definition has
less prominent features in it than target experiments. The motifs

Figure 26: Motifs learned by the cRBM. While the motifs are much
less prominent than the DHS data from chapter 4.3.1, the
model still finds over-represented motifs.

learned by the cRBM are depicted in figure 26. We can observe clearly
that there is a higher GC-content in the learned web-logos and that
otherwise, the motifs are not clearly identifiable. As with the trials
before, we used TOMTOM to check if any of the found motifs are
known in literature.
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The cRBM detected a binding motif for the HNNRPLL protein coding
gene with a p-value < 0.01 (figure 26, third row, fourth column).
HNNRPLL is known to be a master regulator for alternative splic-
ing and supports the stability of mRNAs [41]. This is why it makes
sense that the protein binds RNA unspecifically and thus appears
over-represented in the dataset.
Similarly, we detect a binding site for the RBM4 protein in the third
row and fifth column with a p-value of less than 0.01 and the HuR
protein with also a p-value of less than 0.01.
HuR is also described to be involved in the stability of mRNA and
should thus be present in background binding [1].
However, many of the other motifs do not produce any matches. They
might have learned only noise from the data which also is logical be-
cause a good representation of noisy data will also try to capture it
to maximize the posterior probability.

4.5.3 Discrimination Between Control And Target

Next, we performed an analysis of the mean free energy (equation
29) between background and target experiments. For that, we trained
a cRBM model on PUM2 target RBP and compared it to the model
from the previous section (section 4.5.2).

On test sets that were held out during training of both models, we
evaluated and compared them. It is worth noting that the test set
was never used before, also not for evaluating the test error of the
cRBMs which could have an indirect effect on a model because stop-
ping criteria would have been chosen according to it. Therefore, it
is considered best practice not to use the test set at all prior to the
evaluation [13].
For both test sets, we evaluated the free energy on both models and
plotted a colored histogram over the sequences. Figure 27 shows the
mean free energy of test sequences colored in red, green and blue. All
sequences were evaluated on the background model which means the
energy is related to the probability of a sequence to come from the
background distribution. While the absolute values are rather hard to
interpret, the relative relationships between each of the three datasets
are interesting.

60



4.5 bias detection in par-clip experiments

Figure 27: Evaluation of the free energy of background and PUM2
test sequences. Evaluated on the background model, both
sets are very similar in terms of their free energy. The
random sequences, however, are much less probable.

In red are the background sequences while the sequences from the
target experiment are colored in green. To make both values more
comparable, we further added a set of random sequences.

As expected, the random sequences are less probable to belong to
the background distribution than the other two. However, it seems as
if sequences from the PUM2 target experiment have approximately
the same likelihood to belong to the background as the background
sequences themselves.

This might be reasonable because the background distribution is ex-
pected to be much broader than the target distribution. However,
classifying between target and control sequences based on the evalu-
ation on the background model will not be accurate.

Respectively, we also did the complementary analysis in which we
compared all three test sets (background, target and random) on the
model trained on target sequences. The results from the comparison
are depicted in figure 28.
In this case, the test set of PUM2 sequences was the most probable
one while the background sequences had a higher mean free energy.
It is interesting to see, however, that the background distribution is
still reaching far into the target distribution while the overlap be-
tween the target and the random distribution is only marginal.
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Figure 28: Evaluation of the free energy of background and PUM2
test sequences. Evaluated on the target model, the se-
quences from the PUM2 experiment are much more prob-
able than the background sequences. The random se-
quences show the least similarity to the target model.

We see that target and control sequences seem to be very similar to
the model trained on control sequences and distinct to the model
trained on target sequences. Therefore, the background distribution
is much broader which was expected.
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C O N C L U S I O N & O U T L O O K

The goal of this thesis was to investigate if the convolutional restricted
Boltzmann Machine can be used to learn good representations of ge-
nomic sequences and if its unsupervised nature can be used to detect
biases in sequencing protocols.
The model was implemented together with several extensions to the
original algorithm and several tests have shown that meaningful fea-
tures are learned.
Furthermore, a cRBM can be trained on sequencing data from PAR-
CLIP control experiments. Using the data likelihood, we can distin-
guish between control and target experiments. From here, it might be
possible to develop a tool which can reliably determine if a particular
sequence originates from an unintended binding event or whether
the sequence was pulled out correctly by the antibody.

From the conducted tests, it is clear that cRBMs can be used efficiently
to find good data representations of genomic sequences.

5.1 summary

I presented the convolutional restricted Boltzmann machine as an al-
gorithm to learn an efficient representation of sequences. Other re-
cent approaches have proven that deep learning algorithms can be
used to capture patterns in NGS data. CRBMs are an unsupervised
building block of these deep learning techniques but have not yet
been applied to biology.
But while neural networks have the reputation of being hard to inter-
pret, the features learned by their convolutional counterpart are easy
to understand.
In the application of cRBMs to biological sequences, the filters corre-
spond to motif detectors, thus allowing for very natural interpreta-
tion. The unsupervised character of the model allows it to be applied
to problems where labels are hard to get and is one of the points
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where the method differs from cNN architectures that were recently
applied to genomic sequences.

I have introduced the mathematical foundations that underlay our
implementation together with most of the extensions to the original
RBM training procedure. It was further shown that the model can
learn meaningful representations of DHS sequences and that by do-
ing so it recovers known motifs from literature using the sequences
alone.
Additionally, these representations are specific to a tissue type and
strongly depend on the data presented to the model. This property
allows for accurate classification between data from different tissue
types and can also be regarded as a proof-of-concept for the analysis
of background in NGS protocols.
Tests on background data from PAR-CLIP experiments show that the
data likelihood function of cRBMs can be used to determine if a se-
quence belongs to the background or not. The detection of such bi-
ases in an unsupervised fashion can improve peak-calling and thus
help downstream analysis of experiments.
While the model is already working as expected, such a tool still
requires work and improvements upon the existing implementation
which are intended to be done in the future.

5.2 outlook

So far, we have only been looking at one-layered cRBMs. In the future,
it would be interesting to see how the representation of sequences can
be improved in a deep learning scenario as depicted in figure 29.
In such a setting, multiple cRBMs are stacked on top of each other,
making the learning of hierarchical features possible. The second hid-
den layer would learn motifs that are made up from motifs from the
first layer. Such a network is called a deep belief network (DBN) and
has been shown to learn meaningful high-level features in computer
vision applications [32].
Another way to stack cRBMs could be to use a standard RBM model
for the second layer, thus capturing the interactions between motifs.
Both of these stacking approaches have clear biological interpreta-
tions and can be visualized well (one as motif logos by projecting
motifs from higher layers back to input space, the other as a graph
connecting motifs with each other).
Deep architectures have been shown to add much more representa-
tive power to a model because units in higher layers are able to grasp
global structures in the data while the first layer features describe
prominent patterns on a local level.

64



5.2 outlook

Another interesting aspect would be to develop a method that per-
forms peak-calling without the need for an explicit control experi-
ment but rather an ensemble from previous controls.

Figure 29: Schematic view of a deep
belief network

A cRBM would be trained on
these different control datasets
and sequences coming from
new target PAR-CLIP experi-
ments could be evaluated on
that model. The free energy
(or data likelihood, if the parti-
tion function can be estimated)
would then tell whether the ex-
periment went well and also
which sequences belong to the
background.
Such a method would reduce
the cost of PAR-CLIP experi-
ments significantly because the
need to conduct control experi-
ments would be eliminated.

Many smaller improvements to the existing implementation will be
incorporated in the future, such as an estimation of the data likeli-
hood probability instead of measuring only the free energy. This is
especially necessary when the model is not used in a comparative
way where the ratio of free energy does not require the computation
of the partition function.

It is a severe constraint on the model that it can only use one single
graphics card for training. While it is possible that this issue will be
resolved as the Theano framework evolves, an effort can be made to
process batches of the training on different GPUs and speed up the
training procedure.
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